Establishing open and general benchmarks has been a critical driving force behind the success of modern machine learning techniques. As machine learning is being applied to broader domains and tasks, there is a need to establish richer and more diverse benchmarks to better reflect the reality of the application scenarios. Graph learning is an emerging field of machine learning that urgently needs more and better benchmarks. To accommodate the need, we introduce Graph Learning Indexer (GLI), a benchmark curation platform for graph learning. In comparison to existing graph learning benchmark libraries, GLI highlights two novel design objectives. First, GLI is designed to incentivize \emph{dataset contributors}. In particular, we incorporate various measures to minimize the effort of contributing and maintaining a dataset, increase the usability of the contributed dataset, as well as encourage attributions to different contributors of the dataset. Second, GLI is designed to curate a knowledge base, instead of a plain collection, of benchmark datasets. We use multiple sources of meta information to augment the benchmark datasets with \emph{rich characteristics}, so that they can be easily selected and used in downstream research or development. The source code of GLI is available at \url{https://github.com/Graph-Learning-Benchmarks/gli}.
translated by 谷歌翻译
我们为平面姿势图优化提供了一个强大的框架,该框架被环闭合离群值污染。我们的框架首先将截短的最小二乘内核包裹的强大的PGO问题拒绝了异常值,从而拒绝了异常值。然后,该框架引入了线性角度表示,以重写最初用旋转矩阵配制的第一个子问题。该框架配置为渐变的非凸度(GNC)算法,以连续解决两个非凸子问题,而无需初始猜测。得益于两个子问题的线性属性,我们的框架只需要线性求解器才能最佳地解决GNC中遇到的优化问题。我们在平面PGO基准中广泛验证了所提出的框架,称为Degnc-Laf(脱钩的非跨性别量均具有线性角度公式)。事实证明,它比标准和通用GNC的速度显着(有时达到30倍以上),同时导致高质量的估计值。
translated by 谷歌翻译
恶意软件是跨越多个操作系统和各种文件格式的计算机的最损害威胁之一。为了防止不断增长的恶意软件的威胁,已经提出了巨大的努力来提出各种恶意软件检测方法,试图有效和有效地检测恶意软件。最近的研究表明,一方面,现有的ML和DL能够卓越地检测新出现和以前看不见的恶意软件。然而,另一方面,ML和DL模型本质上易于侵犯对抗性示例形式的对抗性攻击,这通过略微仔细地扰乱了合法输入来混淆目标模型来恶意地产生。基本上,在计算机视觉领域最初广泛地研究了对抗性攻击,并且一些快速扩展到其他域,包括NLP,语音识别甚至恶意软件检测。在本文中,我们专注于Windows操作系统系列中的便携式可执行文件(PE)文件格式的恶意软件,即Windows PE恶意软件,作为在这种对抗设置中研究对抗性攻击方法的代表性案例。具体而言,我们首先首先概述基于ML / DL的Windows PE恶意软件检测的一般学习框架,随后突出了在PE恶意软件的上下文中执行对抗性攻击的三个独特挑战。然后,我们进行全面和系统的审查,以对PE恶意软件检测以及增加PE恶意软件检测的稳健性的相应防御,对近最新的对手攻击进行分类。我们首先向Windows PE恶意软件检测的其他相关攻击结束除了对抗对抗攻击之外,然后对未来的研究方向和机遇脱落。
translated by 谷歌翻译
逆势培训可针对特异性对抗性扰动有用,但它们也证明旨在展示偏离用于培训的攻击的攻击。然而,我们观察到这种无效性是本质上与域的适应性,深度学习中的另一个关键问题似乎是一个有希望的解决方案。因此,我们提出了ADV-4-ADV作为一种新的逆势培训方法,旨在保持针对看不见的对抗性扰动的鲁棒性。基本上,ADV-4-ADV将攻击产生不同的扰动作为不同的域,并且通过利用逆势域适应的力量,它旨在消除域/攻击特定的功能。这迫使训练有素的模型来学习强大的域名不变的表示,这反过来增强了其泛化能力。对时尚 - MNIST,SVHN,CIFAR-10和CIFAR-100的广泛评估表明,基于由简单攻击(例如,FGSM)制备的样本训练的模型可以推广到更高级的攻击(例如, PGD​​),性能超过了这些数据集的最先进的提案。
translated by 谷歌翻译
对医疗保健和生物医学应用的关键,呼吸监测通常在实践中使用可穿戴传感器,由于它们与人体直接接触而导致不便。因此,研究人员一直在不断寻找免费的接触替代品。尽管如此,现有的无联系设计主要需要人类受试者保持静止,在正常环境中大大限制了身体运动不可避免的日常环境中的收养。幸运的是,透射频率(RF)使能无接触感测,但通过传统过滤不可分割的运动干扰,可以在深度学习的帮助下提供蒸馏呼吸波形的潜力。为了实现这一潜力,我们在身体运动下引入了更多内容以进行细粒度的呼吸监测。更多-fi利用IR-UWB雷达来实现无接触感测,并充分利用复杂的雷达信号进行数据增强。更多-Fi的核心是一种新颖的变分编码器解码器网络;它旨在单独用以非线性方式通过身体运动调节的呼吸波形。我们具有12个受试者和66小时数据的实验表明,尽管身体运动引起的干扰,但仍然需要更准确地恢复呼吸波。我们还讨论了肺部疾病诊断的潜在应用。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译